

NARAYANA'S SENSATIONAL SU

7 Students Secured 100 Percentile in All India JEE Main-2020

ADMISSIONS OPEN (2020-21)

OUR REGULAR CLASSROOM PROGRAMME

One Year Classroom Program JEE/NEET-2021

(for students moving from XI to XII)

Four Year Integrated Classroom Program JEE/NEET-2024 (for students moving from VIII to IX)

Two Year Classroom Program JEE/NEET-2022

(for students moving from X to XI)

FOUNDATION PROGRAMMES For NTSE, NSEJS, JSTSE, Olympiads & School/Board Exams (for students moving to Class VI, VII, VIII, IX & X)

Three Year Integrated Classroom Program

JEE/NEET-2023

(for students moving from IX to X)

APEX BATCH

Two years school Integrated Classroom Program - 2022

For JEE Main & Advance / NEET (for XI Studying Students)

□ Online Classes for IIT/NEET/Foundation/Olympiads

- Access Recording of Past Classes on n-Learn App
- Online Parent Teacher Meeting
- Personalized Extra Classes & Live Doubt Solving
- Hybrid/Customized Classroom model
- Video Solution of Weekly/Fortnightly Test
- · Printed Study Material will be sent by us
- n-Lean App
- Counselling Motivational sessions
- Affordable Fee
- Doubt Classes / Practice Classes
- Provision to Convert from online to regular classroom programme
- Once Classes resume by just paying nominal fee

Online Test

- Micro & Macro Analysis
- Relative performance (All India Ranking)
- Question wise Analysis
- Unlimited Practice Test
- Grand Test

For Class

JEE-MAIN-2021
MARCH ATTEMPT

18.03.21_SHIFT - I

CHEMISTRY

JEE(MAIN) 2021 (18 MARCH ATTEMPT) SHIFT-1 CHEMISTRY

- 1. Non reducing sugar which gives two reducing sugar is
 - (1) Glucose
- (2) Fructose
- (3) Galactose
- (4) Sucrose

Ans. (4)

Sol. Sucrose
$$\xrightarrow{\text{Hydrolysis}}$$
 Glucose + Fructose

Sucrose is disaccharide and it gives two monosaccrides on hydrolysis.

Sucrose is non-reducing sugar but sugars obtained by hydrolysis are reducing sugars.

2.
$$\underbrace{KMnO_4}_{CH_3}$$
 product is :

Ans. (3)

3. $C_8H_8O + CH_3CH_2MgBr \longrightarrow (A) \xrightarrow{Lucas} (B)$ Instant turbidity Identify product (B).

 $(1) \qquad \begin{array}{c} Cl \\ Cl \end{array} \qquad (2) \qquad (3) \qquad \begin{array}{c} Cl \\ (4) \qquad \end{array}$

Ans. (2)

Sol. O $(i) C_2H_5MgBr$ $(ii) H_2O$ OH Cl Instant turbidity

4. Match the following :

Column-I	Column-II	
(A) Anti fertility	(i) Alitame	
(B) Antacid	(ii) Valium	
(C) Tranquilizer	(iii) Cimetidine	
(D) Artificial sweetener	(iv) Novestrol	
(1) $(A) \rightarrow (iv)$; $(B) \rightarrow (iii)$; $(C) \rightarrow (ii)$; $(D) \rightarrow (i)$		
(2) (A) \rightarrow (i); (B) \rightarrow (ii); (C	\rightarrow (iii); (D) \rightarrow (iv)	
$(2) (A) \rightarrow (ii) \cdot (D) \rightarrow (iv) \cdot (D)$	$C(x, C(x), C(x)) \rightarrow C(x, C(x))$	

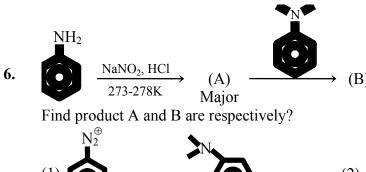
$$(3)$$
 $(A) \rightarrow (ii)$; $(B) \rightarrow (iv)$; $(C) \rightarrow (i)$; $(D) \rightarrow (iii)$

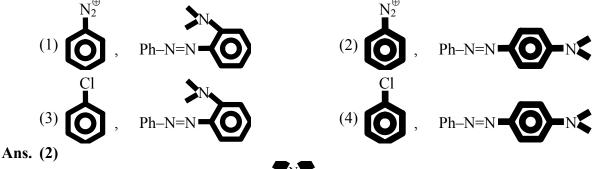
$$(4) (A) \rightarrow (iv); (B) \rightarrow (iii); (C) \rightarrow (i); (D) \rightarrow (ii)$$

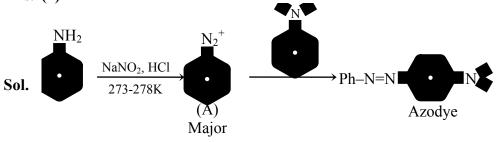
Ans. (1)

5. Which of the following statements is/are true for methane?

Statement-1: Methane causes both, photochemical smog and global warming.


Statement-2: Methane is found in paddy fields.


Statement-3: It is a stronger global warming gas than CO₂.


Statement-4: Methane is a part of reducing smog.

Ans. (1)

Sol. Methane is a part of oxidising smog not reducing smog.

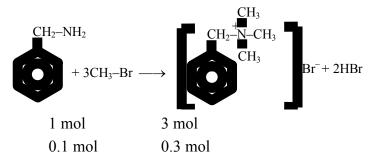
7.
$$CH_2-NH_2 \longrightarrow CH_3-Br \longrightarrow CH_3$$

$$CH_2-N-CH_3 \longrightarrow CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$


$$CH_3$$

Moles of Methylbromide required to form 23 gm Trimethylbenzyl ammonium bromide is $n \times 10^{-1}$. Calculate "n"

Ans. (3)

Sol. Mole of trimethylbenzyl ammonium bromide =
$$\frac{23}{230}$$
 = 0.1

Mole of CH_3Br required = $3 \times 0.1 = 0.3$ mol

- 8. C_3H_6O can shows
 - (1) Chain isomers

- (2) Position isomers
- (3) Functional isomers

(4) Metamers and positional isomers

Ans. (3)

Sol. Acetone and propanal are functional isomers having same molecular formula C₃H₆O.

9. Math the following

Column (I)

Column (II)

(A) Alc. KOH

(I) Electrode formation

(B) Pd/BaSO₄

(II) Lindlar

(C) BHC

- (III) β-Elimination
- (D) Polyacetylene
- (IV) Addition

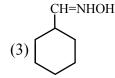
(1)
$$A \rightarrow II ; B \rightarrow III ; C \rightarrow IV ; D \rightarrow I$$

(2)
$$A \rightarrow III$$
; $B \rightarrow II$; $C \rightarrow I$; $D \rightarrow IV$

(3)
$$A \rightarrow III ; B \rightarrow II ; C \rightarrow IV ; D \rightarrow I$$

(4)
$$A \rightarrow I$$
; $B \rightarrow III$; $C \rightarrow II$; $D \rightarrow IV$

Ans. (3)



Compound A is:

Ans. (1)

Sol.
$$CN$$
 $COOH_2$ $COOH_2$

- 11. Chemical used to decrease melting point of Alumina is:
 - (1) Bauxite
- (2) Cryolite
- (3) Calamine
- (4) Kaolinite

Ans. (2)

Sol. Fact

- 12. Number of unpaired electrons in $K_3[Cr(ox)_3]$ is :
- Ans. (3)
- **Sol.** Cr^{3+} $t_{2g}^{1,1,1}$ $e_{g}^{0,0}$

So number of unpaired electron = 3

- **13.** A diatomic compound AX has bond order 2.5 Both A and X are elements of 2nd period of periodic table. Total number of electrons in 1 molecule of AX is-
- Ans. (15)
- Sol. Species is NO

Total number of electron = 7 + 8 = 15

- **14.** If Na⁺ has ionic radii 1.02Å, ionic radii of Mg²⁺ & Al³⁺ are respectively:
 - (1) 0.72 Å, 0.66 Å

(2) 1.05 Å, 0.99 Å

(3)

(4)

Ans. (1)

15. pH of buffer solution of CH₃COOH and CH₃COONa is 5.74. Concentration of CH₃COOH = 1M. Find concentration of CH₃COONa in solution. Given pk_a of CH₃COOH = 4.74.

Ans. (10)

Sol.
$$pH = pk_a + log_{10} \frac{[CH_3COONa]}{[CH_3COOH]}$$

$$5.74 = 4.74 + \log_{10} \frac{\text{CH}_3\text{COONa}}{1}$$

$$\therefore$$
 [CH₃COONa] = 10M

16. Match the column

Column - I

Column-II

- (A) Ca(OCl)₂
- (P) Bleach

(B) CaO

(Q) Antacid

- (C) CaCO₃
- (R) Plaster of paris
- (D) CaSO₄. $\frac{1}{2}$ H₂O
- (S) Cement

(1)
$$A \rightarrow P$$
, $B \rightarrow S$, $C \rightarrow Q$, $D \rightarrow R$

(2)
$$A \rightarrow P$$
, $B \rightarrow Q$, $C \rightarrow S$, $D \rightarrow R$

$$(3) A \rightarrow P, B \rightarrow S, C \rightarrow R, D \rightarrow Q$$

$$(4) A \rightarrow S$$
, $B \rightarrow Q$, $C \rightarrow R$, $D \rightarrow P$

Ans. (1)

- 17. Which subshell has 2 radial nodes & no angular node-
 - (1) 3s
- (2) 2s
- (3) 2p
- (4) 3p

Ans. (1)

	` '		
Sol.	Subshell	Radial node	Angular node
	3s	2	0
	2s	1	0
	2p	0	1
	3p	1	1

18. Find overall order of given reaction using following experimental data

$$2NO + Cl_2 \longrightarrow 2NOCl$$

[NO] Initial rate Exp. $[Cl_2]$ 0.1 1. 0.1 0.18 2. 0.1 0.2 0.35 3. 0.2 0.2 1.4

Ans. (3)

Sol.
$$\frac{0.18}{0.35} = \frac{K[NO]^{\alpha}[Cl_{2}]^{\beta}}{K[NO]^{\alpha}[Cl_{2}]^{\beta}}$$
$$\frac{0.18}{0.35} = \frac{[0.1]^{\alpha}[0.1]^{\beta}}{[0.1]^{\alpha}[0.2]^{\beta}}$$
$$\beta = 1$$
$$\frac{0.35}{1.4} = \frac{K[0.1]^{\alpha}[0.2]^{\beta}}{K[0.1]^{\alpha}[0.2]^{\beta}}$$
$$\alpha = 2$$

Rate = $K[NO]^1[Cl_2]^2$ Overall order = 3

19. 2 Molal aqueous solution of weak acid freezes at -3.885°C. K_f of water = 1.85 Km^{-1} . If degree of dissociation of acid is $x \times 10^{-2}$. Determine x.

Ans. (5)

Sol.
$$\Delta T_f = 3.885$$
, $K_f = 1.85$ Km⁻¹
 $i = 1 + \alpha$, $m = 2$
Now,
 $\Delta T_f = i.K_f.m$
 $3.885 = (1 + \alpha) \times 1.85 \times 2$
 $\alpha = 0.05 = 5 \times 10^{-2}$
 $\Rightarrow x = 5$

20. Match the following

Column – I	Column -	II
(A) Anticancer Drug	(I) Ru	
(B) Chlorophyll	(II) Co	
(C) Vitamin B_{12}	(III) Mg	
(D) Grubbs reagent	(IV) Pt	
(1) $A \rightarrow IV$; $B \rightarrow III$; C	\rightarrow II; D \rightarrow I	(2) $A \rightarrow I$; $B \rightarrow II$; $C \rightarrow III$; $D \rightarrow IV$
(3) $A \rightarrow III ; B \rightarrow IV ; C$	\rightarrow II; D \rightarrow I	(4) $A \rightarrow I$; $B \rightarrow III$; $C \rightarrow II$; $D \rightarrow IV$
Ans. (1)		

- **Sol.** \Rightarrow Cis-platin [Pt(NH₃)₂Cl₂] used in treatment of cancer
 - ⇒ Chlorophyll is complex of Mg
 - \Rightarrow Vitamin B₁₂ is a complex of Co
 - ⇒ Grubb's catalyst are a series of catalysts containing Ruthenium
- 21. What is the structure of trans isomer of $[NiBr_2(PPh_3)_2]$ & meridional isomer of $[Co(NH_3)_3(NO_2)_3]$?

$$(1) \begin{array}{c|c} NO_2 & Br \\ O_2N & NH_3 \\ O_2N & NH_3 \\ NH_3 & Ph_3P \end{array}$$

(2)
$$\begin{array}{c|c} NO_2 & Br & PPh_3 \\ O_2N & NH_3 & Ph_3P \end{array}$$

$$(3) \begin{array}{c|c} NO_2 & Ph_3P \\ O_2N & Co \\ NH_3 & Ph_3P \\ NH_3 & Ph_3P \end{array} Ni \begin{array}{c} Br \\ Br \\ NH_3 \end{array}$$

$$(4) \begin{array}{c|c} NO_2 & Ph_3P \\ \hline O_2N & NO_2 \\ NH_3 & Ph_3P \end{array} Ni \begin{array}{c} Br \\ Br \\ NH_3 \end{array}$$

Ans. (2)

- 22. Phosphoric acid react with PCl₃ to give A. How many ionisable hydrogen are there in A?
 - (1) 2

(2) 0

(3) 1

(4) 3

Ans. (1)

Sol.
$$H_3PO_3 + PCl_3 + 2H_2O \rightarrow H_4P_2O_5 + 3HCl$$

Phosphoric acid

Basicity = 2

- 23. An element 'A' crystallises in HCP lattice. Element 'M' occupies 2/3rd of tetrahedral voids. Determine formula of compound.
 - $(1) M_4 A_3$

(2) MA

 $(3) M_2 A_3$

 $(4) M_4A$

Ans. (1)

Sol. Effective number of particles in HCP lattice unit cell = 6

& number of tetrahedral voids are = 12

In one unit cell A = 6

$$M = \frac{2}{3} \times 12 = 8$$

Therefore formula of compound M₈A₆

Or M₄A₃

24. Determine $\Delta_r H$ of the reaction

$$C_2H_6 \rightarrow C_2H_4 + H_2$$

given: Bond energy (in KJ/mol)

C-C: 340

C = C: 602

C-H: 411

H –H: 432

Ans. (128)

Sol.
$$H \longrightarrow C - C \longrightarrow H \longrightarrow H \longrightarrow C = C \longrightarrow H + H_2$$

$$\Delta_{r}H = [E_{C-C} + 6E_{C-H}] - [E_{C-C} + 4E_{C-H} + E_{H-H}]$$

$$= E_{C-C} + 2E_{C-H} - E_{C-C} - E_{H-H}$$

$$= 340 + 822 - 602 - 432$$

= 128 KJ/mol

25. Calculate ΔG° of reaction.

$$2Fe^{3+} + 2I^{-} \rightarrow 2Fe^{2+} + I_{2}$$

Given :
$$E_{Fe^{3+}/Fe^{2+}}^{\circ} = 0.77 \text{ V}$$

$$E_{I_2/I^-}^{\circ} = 0.53 \text{ V}$$

Ans. (46)

Sol.
$$2Fe^{3+} + 2I^{-} \rightarrow 2Fe^{2+} + I_{2}$$

$$E_{Cell}^{\circ} = E_{c}^{\circ} - E_{a}^{\circ}$$

$$= 0.77 - 0.53$$

$$= 0.24 \text{ V}$$

$$\Delta G^{o} = -2 \times 96500 \times 0.24$$

$$= -46320 J$$

$$= -46.32 \text{ KJ}$$

26. Assertion: Mg(HCO₃)₂ on heating produces MgCO₃

Reason: Mg(OH)₂ has greater solubility than MgCO₃.

- (1) Assertion is correct but reason is wrong
- (2) Both assertion and reason are correct and reason is correct explanation of assertion
- (3) Both assertion and reason are correct but reason is not correct explanation of assertion
- (4) Assertion is wrong but reason is correct.

Ans. (4)

Sol.
$$Mg(HCO_3)_2 \xrightarrow{\Delta} Mg(OH)_2 + CO_2$$

27. Number of H_2O molecules produced from complete combustion of 3g ethane = $N \times 10^{22}$. Determine N. $(N_A = 6.023 \times 10^{23})$

Ans. (18)

Sol.
$$C_2H_6 + \frac{7}{2}O_2 \longrightarrow 2CO_2 + 3H_2O$$

Moles =
$$\frac{3}{20}$$
 = 0.1

$$Moles = 0.3$$

$$\therefore \text{ Molecules} = 0.3 \times 6.022 \times 10^{23}$$

$$= 18.066 \times 10^{22}$$

$$\therefore$$
 N = 18

28. Match the column

Column - I

- (A) Contact process
- (B) Deacon's process
- (C) Hydrogenation of vegetable oil
- (D) Cracking of hydrocarbon
- (1) A-Q ; B-R, C-S, D-P
- (3) A-Q ; B-S, C-R, D-P

- Column II
- (P) ZSM-5
- $(Q) V_2 O_5$
- (R) CuCl₂
- (S) Particle Ni
- (2) A-Q; B-R, C-P, D-S
- (4) A-R ; B-Q, C-S, D-P

Ans. (1)