

NARAYANA'S SENSATIONAL SU

7 Students Secured 100 Percentile in All India JEE Main-2020

ADMISSIONS OPEN (2020-21)

OUR REGULAR CLASSROOM PROGRAMME

One Year Classroom Program JEE/NEET-2021

(for students moving from XI to XII)

Four Year Integrated Classroom Program JEE/NEET-2024 (for students moving from VIII to IX)

Two Year Classroom Program JEE/NEET-2022

(for students moving from X to XI)

FOUNDATION PROGRAMMES For NTSE, NSEJS, JSTSE, Olympiads & School/Board Exams (for students moving to Class VI, VII, VIII, IX & X)

Three Year Integrated Classroom Program

JEE/NEET-2023

(for students moving from IX to X)

APEX BATCH

Two years school Integrated Classroom Program - 2022

For JEE Main & Advance / NEET (for XI Studying Students)

□ Online Classes for IIT/NEET/Foundation/Olympiads

- Access Recording of Past Classes on n-Learn App
- Online Parent Teacher Meeting
- Personalized Extra Classes & Live Doubt Solving
- Hybrid/Customized Classroom model
- Video Solution of Weekly/Fortnightly Test
- · Printed Study Material will be sent by us
- n-Lean App
- Counselling Motivational sessions
- Affordable Fee
- Doubt Classes / Practice Classes
- Provision to Convert from online to regular classroom programme
- Once Classes resume by just paying nominal fee

Online Test

- Micro & Macro Analysis
- Relative performance (All India Ranking)
- Question wise Analysis
- Unlimited Practice Test
- Grand Test

For Class

JEE-MAIN-2021
MARCH ATTEMPT

18.03.21_SHIFT - II

CHEMISTRY

CHEMISTRY

1.
$$\frac{\text{NH}_2}{\text{conc. HNO}_3} + \frac{\text{NH}_2}{\text{NO}_2} + \frac{\text{NH}_2}{\text{NO}_2} + \frac{\text{NH}_2}{\text{NO}_2}$$
(A) (B) (C)

Select the correct order of percentage yield of products A, B & C respectively -

- (1) A > B > C
- (2) B > A > C
- (3) A > C > B
- (4) C > B > A

Ans. (4)

2. Statement-1: Thermal power plant waste is non biodegradable.

Statement-2: Biodegradable detergent causes eutrophication.

- (1) Both Statement-1 and Statement-2 are correct
- (2) Both Statement-1 and Statement-2 are false
- (3) Statement-1 is correct and Statement-2 is false
- (4) Statement-1 is false and Statement-2 is correct

Ans. (1)

3. Compound A reacts with benzene sulfonyl chloride to form B which is soluble in NaOH. Compound A is-

$$(1)$$
 NH

$$(2)$$
 N

$$(3)$$
 NH_2

$$(4)$$
 N

Ans. (3)

4. What product are obtained when 1–Methoxy naphthalene reacts with hydroiodic acid?

Ans. (3)

 $\xrightarrow{\text{dil.NaOH}} (P) \xrightarrow{H^{\oplus}/\Delta} (Q)$ 5.

(P) and (Q) respectively are:

Ans. **(2)**

6. Match the column

Column-I

Column-II

- (A) Artificial sugar
- (i) Meprobamate
- (B) Tranquilizer
- (ii) Ranitidine
- (C) Antifertility drug
- (iii) Norethindrone

(D) Antacid

- (iv) Alitame
- (1) (A) \rightarrow (iv); (B) \rightarrow (i); (C) \rightarrow (iii); (D) \rightarrow (ii)
- (2) $(A) \rightarrow (iv)$; $(B) \rightarrow (i)$; $(C) \rightarrow (ii)$; $(D) \rightarrow (iii)$
- (3) (A) \rightarrow (iv); (B) \rightarrow (iii); (C) \rightarrow (i); (D) \rightarrow (ii)
- $(4) (A) \rightarrow (i) ; (B) \rightarrow (iii) ; (C) \rightarrow (iv) ; (D) \rightarrow (ii)$

Ans. **(1)**

- 7. Vitamin K deficiency causes -
 - (1) increased blood clotting time.
- (2) decreased blood clotting time.
- (3) increased fragility of RBCs.
- (4) night blindness.

(1) Ans.

8.

Hybridisation of marked carbon atoms a, b and c are respectively-

- (1) sp^3 , sp^3 , sp^3 (2) sp^2 , sp^2 , sp^3 (3) sp^3 , sp^2 , sp^2 (4) sp^3 , sp^2 , sp

(3) Ans.

9. Percentage yield of product obtained in the following reaction is

Ans. (80)

- 10. In the reaction of benzamide with hypobromite CO group is obtained in the form of -
 - (1) CO
- (2) CO₂
- $(3) CO_3^{-2}$
- (4) HCO₃⁻

Ans. (3)

11. Match the column

Column-I

Column-II

(A) Be

(P) Used in treatment of cancer

(B) Mg

(Q) Used in reduction of metals

(C) Ca

(R) Used for making windows of x-ray tubes

(D) Ra

- (S) Used in signal & explosive
- $(1) (A) \rightarrow (R) ; (B) \rightarrow (S) ; (C) \rightarrow (Q) ; (D) \rightarrow (P)$
- $(2) (A) \rightarrow (P) ; (Q) \rightarrow (S) ; (C) \rightarrow (Q) ; (D) \rightarrow (R)$
- $(3) (A) \rightarrow (P) ; (B) \rightarrow (Q) ; (C) \rightarrow (R) ; (D) \rightarrow (S)$
- $(4) (A) \rightarrow (R) ; (B) \rightarrow (Q) ; (C) \rightarrow (S) ; (D) \rightarrow (P)$

Ans. (1)

- 12. H_2O_2 in basic medium shows which of the following reaction
 - (A) $Mn^{2+} \rightarrow Mn^{4+}$
 - (B) $I_2 \rightarrow I^-$
 - (C) $PbS \rightarrow PbSO_4$
 - (1) A & B
- (2) A only
- (3) B & C
- (4) B only

Ans. (1)

Sol.
$$\Rightarrow$$
 PbS(s) + H₂O₂ \rightarrow PbSO₄ (s) + H₂O

This reaction occurs in acidic medium

- \Rightarrow all other occur in basic medium.
- 13. An ideal gas is taken in a container which is divided into 2 parts by a partition. Entropy of the parts is $S_1 \& S_2$. What will be the entropy if partition is removed?
 - $(1) S_1 + S_2$
- $(2) S_1 \times S_2$
- (3) $\frac{S_1}{S_2}$
- (4) $\frac{S_2}{S_1}$

Ans. (1)

Sol. Entropy is an extensive property

14.
$$2A \longrightarrow A_2$$

$$T = 400 K$$

$$K_{eq} = x \times 10^{-4},$$

$$\Delta G^{\circ} = 25.2 \text{ kJ/mol},$$

$$R = 8.3 \text{ J/k-mol}$$

Determine x?

Ans. (5)

Sol.
$$\Delta G^{\circ} = -RT \ell nk$$

$$25.2 \times 10^3 = -2.3 \times 8.3 \times 400 \log_{10} K_{eq}$$

$$\log_{10} K_{eq} = -3.3$$

$$\therefore K_{eq} = 5 \times 10^{-4}$$

15. In a first order reaction,
$$t_{\frac{1}{2}} = 1$$
 min. Time taken for 99.9% completion is min.

$$(\ln 2 = 0.69, \ln 10 = 2.3)$$

Sol.
$$k = \frac{1}{t} ln \left(\frac{C_0}{C_1} \right)$$

$$\frac{\ln 2}{1} = \frac{1}{t} \ln \left(\frac{100}{0.1} \right) \therefore t = \frac{\ln 1000}{\ln 2} = \frac{3 \times 2.3}{0.69} = 10$$

16. Match the column

Column-A

Metals

Column-B

Refining process

- (A) Ni
- (B) Si

(p) Vapour phase refining

(a) a

(q) Electrolytic refining

(C) Cu

(r) Zone refining

- (D)
- (1) A p ; B r ; C q ; D -
- (2) A p; B q; C r; D -
- (3) A r; B p; C q; D -
- (4) A ; B r ; C q ; D p

Ans. (1)

17. Statement-1: Bohr's model helps in explaining spectral lines and stability of Li⁺

Statement-2: Bohr's model fails to explain splitting of spectral lines in magnetic field.

- (1) Both Statement-1 and Statement-2 are correct
- (2) Both Statement-1 and Statement-2 are false
- (3) Statement-1 is correct and Statement-2 is false
- (4) Statement-1 is false and Statement-2 is correct

Ans. (4)

- **18.** CdS & TiO₂ have _____ & ____ charged colloidal particles.
 - (1) -, +
- (2) +, +
- (3) -, -
- (4) +, -

- Ans. (1)
- 19. Upon partial hydrolysis of A, XeO_2F_2 gets formed. Number of lone pairs in A = ?
- Ans. (19)
- **Sol.** $XeF_6 \xrightarrow{Partial hydrolysis} XeO_2F_2 + HF$

No. of lone pair = $3 \times 6 + 1 = 19$

- **20.** CuSO₄.5H₂O has x secondary valency of Cu^{2+} & y H₂O molecules bonded through H-bonding. x & y are respectively :
 - (1) 4, 1
- (2) 6, 4
- (3) 6, 1
- (4) 1, 4

- Ans. (1)
- 21. Boiling point of 2 molal aqueous solution of a non volatile solute is 100.52°C. Determine percentage of dimerisation of solute in solution. (Given $K_b = 0.52 \text{ K kg mol}^{-1}$ of H_2O)
- Ans. (100)
- **Sol.** $\Delta T_b = K_b \times i \times m$

$$0.52 = 0.52 \times i \times 2$$

$$i = \frac{1}{2}$$

for dimerisation $i = 1 + \left(\frac{1}{2} - 1\right)\alpha = \frac{1}{2}$

$$\alpha = 1 (100 \%)$$

22. Arrange the following species in decreasing order of oxidation number of nitrogen.

$$NO, N_2O, NO_3^-, NO_2$$

$$(1) NO_3^- > NO_2 > NO > N_2O$$

(2)
$$NO_2 > NO_3^- > NO > N_2O$$

(3)
$$N_2O > NO > NO_2 > NO_3$$

$$(4) NO_3^- > NO_2 > N_2O > NO$$

- Ans. (1)
- Sol. NO_3

$$x + 3(-2) = -1$$

$$x = +5$$

 NO_2

$$x + 2(-2) = 0$$

$$x = 4$$

NO

$$x + 1(-2) = 0$$

$$x = 2$$

 N_2O

$$2x + 1(-2) = 0$$

$$x = 1$$

- 23. Solubility of CaSO₄ in pure water is 8×10^{-4} M. If solubility of CaSO₄ in 0.01 M H₂SO₄ is $x \times 10^{-6}$ M, determine x.
- Ans. (64)
- **Sol.** In pure H_2O

$$CaSO_4(s) \rightleftharpoons Ca^{+2}(aq) + SO_4^{-2}(aq)$$

$$K_{sp} = x^2$$
 (x: solubility in pure H_2O)

$$K_{sp} = 64 \times 10^{-8} = 6.4 \times 10^{-7}$$

In presence of H_2SO_4 , Let solubility = y mol/L

$$CaSO_4 \rightleftharpoons Ca^{+2} + SO_4^{-2}$$

$$y y + 0.01$$

$$\Rightarrow$$
 k_{sp} = [Ca⁺²] [SO₄⁻²]
 \Rightarrow 6.4 × 10⁻⁷ = y (10⁻²)

$$\Rightarrow$$
 y = 6.4 × 10⁻⁵ = 64 × 10⁻⁶ = x × 10⁻⁶

$$x = 64$$

24. If O_2 behaves as ideal gas, find ratio of root mean square velocity & average velocity.

$$(1) \sqrt{\frac{3\pi}{8}}$$

(2)
$$\sqrt{\frac{3}{3}}$$

(3)
$$\sqrt{\frac{8\pi}{3}}$$

$$(4) \sqrt{\frac{3\pi}{2}}$$

Ans. (1)

Sol.
$$v_{rms} = \sqrt{\frac{3RT}{M_o}}$$

$$v_{avg} = \sqrt{\frac{8RT}{\pi M_o}}$$

$$\frac{v_{rms}}{v_{avg}} = \sqrt{\frac{3\pi}{8}}$$

25. The molar conductivity of BaSO₄ at infinite dilution is:-

Given:
$$\lambda_m^o (BaCl_2) = 278 \, \Omega^{-1} mol^{-1} cm^2$$

 $\lambda_m^o (H_2SO_4) = 860 \, \Omega^{-1} mol^{-1} cm^2$
 $\lambda_m^o (HCl) = 426 \, \Omega^{-1} mol^{-1} cm^2$

$$\begin{aligned} \text{Sol.} & \quad \lambda_m^o \, (BaCl_2) & \quad = \lambda_m^o \, (Ba^{+2}) + \lambda_m^o \, (SO_4^{-2}) \\ & \quad = \lambda_m^o \, (BaCl_2) + \lambda_m^o \, (H_2SO_4) - 2\lambda_m^o \, (HCl) \\ & \quad = 278 + 860 - 2 \times 426 \\ & \quad = 286 \, \Omega^{-1} \text{mol}^{-1} \text{cm}^2 \end{aligned}$$